Estimation of glucose production during exercise with a one-compartment variable-volume model.

Abstract

A variable-volume one-compartment model of glucose kinetics and step increases in the rate of tracer infusion were examined for estimation of endogenous glucose production (Ra) during moderate exercise in dogs. A primed infusion of D-[3-3H]glucose was left constant or increased 1.5-, 2-, 3-, 4-, or 5-fold at the onset of a 60-min period of exercise. Application of a regression method, in which Ra and the effective distribution volume were estimated over time, revealed dynamic changes in Ra that were not evident during the constant tracer infusion with a fixed-volume model. Application of the fixed-volume model to studies performed with a two- or three-fold step increase in tracer resulted in the lowest sum-of-squares difference from the regression method. Our results demonstrate that application of a variable-volume model can be achieved during exercise by enrichment of the plasma specific activity through step increases in the rate of tracer infusion and application of a regression method. Alternately, estimates of Ra with a fixed-volume model can be improved by enrichment of the plasma specific activity through a single step increase in the rate of tracer infusion. Our results suggest that when endogenous Ra is changing rapidly, such as at the onset of exercise, these methods will provide a more accurate estimate of Ra than the standard fixed-volume model and constant tracer infusion.

Topics

    0 Figures and Tables

      Download Full PDF Version (Non-Commercial Use)